

The Brazilian Experience with Sugarcane Bioethanol

Luís Cortez UNICAMP/FAPESP

Global Sustainable Bioenergy African Convention Stellenbosh, South Africa, March 17-19 2010

	PROALCOOL
•	Motivation: to reduce oil imports (80% in 1973, 50% of imports)
•	Investments: subsidies evaluated in ~US\$ 10 billion
•	Benefits: avoided expenses with oil imports ~US\$ 60 billion
•	Main actions of Proalcool:
	- Parity ethanol and gasoline prices (advantage to ethanol)
	- Production Cota: cane, sugar and ethanol
	 Prices controlled by the government
	 Reduction of sales tax on ethanol car
	 Petrobras bought and distributed ethanol
	- Petrobras bought and distributed ethanol

...to more government regulation...

• 1970-1990

- 1971: Technology for sugar productivity

Source: "M.A.F. Moraes, "The deregulation of the sugar-ethanol sector in Brazil", Doctorate Thesis, ESALQ, USP (1999)

- PLANALSUCAR: breeding, mill efficiency
- Industrial concentration; mergers
- 1972: Brazil 1st sugar producer in the world
- 1973: 1st oil shock
- 1975: ProAlcool (9/11/1975)
 - Government support for new mills and plantations
 - 20% ethanol added to gasoline
- 1980: 76% of cars sold were ethanol driven \rightarrow 90% in 1983
- 1990: macroeconomic crisis, ethanol shortage → end of subsidies

....to Deregulation

• 1990 onwards

- 1996: announcement of end of prices control
- 1999: end of price control
- 2003: reduced taxation for Flex-Fuel vehicles
- Private sector organization
 - UNICA, ORPLANA, ...
- Sustainability issues
 - Plantation burning for harvesting
 - Zoning

Phases in Brazilian Ethanol

46% of Brazil's energy comes from renewable sources

C.H. Brito Cruz, http://www.fapesp.br/eventos/bioen0809/brito.pdf

Sugarcane for ethanol uses 0.5% of total area

Brazilian Cane, Sugar and Ethanol Production

Evolution of Production: sugarcane, sugar and ethanol

Brazil increased ethanol production and the same time that increased its sugar production Source: UNICA

Ethanol and Biodiesel GHG Reduction at Production Level

Biofuel/Crop	GHG Emission Reduction		
Ethanol ¹			
Sugarcane	90 %		
Lignocellulose	70 - 90 %		
Sugar beet	40 - 50 %		
Maize	13 %		
Biodiesel ²			
Rapeseed/soybeans	40 - 50 %		
Palm oil	35 %		

Source: Doornbosch and Steenblik

Notes: 1. Compared with gasoline; 2. Compared with mineral diesel

GHG and Energy Balance: evolving knowledge

Goldemberg J et al., "Energy Balance for Ethyl Alcohol Production from Crops", Science 2001 p. 903-906 (1978)

Macedo IC, Seabra JEA, Silva JEAR. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The.... Biomass and Bioenergy (2008), doi:10.1016/j.biombioe.2007.12.006

Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020

Isaias C. Macedo^{a,*}, Joaquim E.A. Seabra^b, João E.A.R. Silva^c

^aInterdisciplinary Center for Energy Planning (NIPE), State University of Campinas (Unicamp), CEP 13084-971, Campinas, SP, Brazil ^bCollege of Mechanical Engineering, State University of Campinas, Cidade Universitária "Zeferino Vaz", CEP 13083-970, Barão Geraldo, Campinas-SP, Brazil ^cCentro de Tecnologia Canavieira (CTC), CEP 13400-040, Piracicaba, SP, Brazil

Avoided emissions due to ethanol use (t CO_2 eq/m³ hydrous or anhydrous; substitution criterion for the co-products)

Ethanol use ^a	Avoided	Net emission ^c
	emissions ^b	
E100	-2.0	-1.7
E25	-2.1	-1.8
E100	-2.0	-2.4
FFV	-1.8	-2.2
E25	-2.1	-2.5
E100	-2.0	-1.9
FFV	-1.8	-1.7
E25	-2.1	-2.0

.

.

Source: Macedo IC, Seabra JEA, 2009 NIPE/UNICAMP – CGEE Sustainability phase 1

12

Sugarcane ethanol: Energy balance and GHG emissions

✓ Macedo and Seabra (2008):

- <u>2006</u>: 44 mills (~100 Mtc/year) of Brazilian C-S Region – data from CTC Mutual Control.
- <u>2020 Electricity Scenario</u>: trash recovery (40%) and surplus power production with integrated commercial, steam based cycle (CEST system).
- <u>2020 Ethanol Scenario</u>: trash recovery and ethanol production from biochemical conversion of surplus biomass in a hypothetical system integrated to the mill.

Present Situation of Ethanol in Brazil

- Brazil produces sugar and ethanol at lowest cost in the world
- Sugarcane ethanol presents the best energy balance among biofuels
- It also is the best alternative to mitigate GHG emissions
- 50% of liquid fuels utilized in light vehicles fleet in Brazil
- Ethanol is sold all over Brazil
- Ethanol & bagasse represents 17% of Brazilian Energy Matrix (more than hydroelectricity-13%)
- Generates nearly 750 thousand direct jobs in Brazil
- Important contribution to Brazilian GDP

Light fleet vehicles and Consumption of Ethanol (Hydrous and Anhydrous)

Automotive Use of Ethanol in Brazil

- In Brazil there is no pure gasoline; only E25, E100 and flex
- 50% of light vehicle fleet (around 26 billion liters in 2009)
- Flex vehicles accounts for 90% of sales of new vehicles
- All models manufactured in Brazil have flex version
- Average price of pure ethanol is US\$ 0.70-0.80 at the pump station and E25 is US\$ 1.20-1.50; ethanol production cost approx US\$ 0.70-0.80/liter at the mill
- At the distributor ethanol price is US\$ 37/GJ and "E25 gasoline 43/GJ"
- Today, liquid emissions of CO₂ is 75g/km for the entire light vehicle fleet in Brazil; In Japan is expected to be 120g/km in 2013 (in São Paulo city is 35g/km due to larger use of ethanol)

Expanding Ethanol Production

- But the present questions are:
- How much <u>sustainable ethanol</u> can Brazil produce?
- What are the limits without touching the Amazon and other eco santuaries?
- What could be the sugarcane ethanol contribution to decrease GHG emissions?
- What research can we do to improve cost and sustainability indicators?

NIPE-Unicamp Ethanol Project

Coordinator:

- Professor Rogério Cezar de Cerqueira Leite (UNICAMP)
- Vice-Coordinators:
 - Dr. Manoel Sobral Jr (phase I)
 - Dr. Manoel Regis Lima Verde Leal (phases I e II)
 - Dr. Luís Cortez (phase III)
 - <u>9 senior researchers</u>, around <u>20 researchers involved</u>
 - <u>**Collaboration</u>**: CGEE, MCT, MAPA, EMBRAPA, TRANSPETRO, PETROBRAS, DEDINI, CTC</u>
 - Project in agreement with the Brazilian Agro energy Policy

Source: Leite et al. 2009 Energy 34(2009) 655-661

Objectives

- **OE1**: **Present technology** and possible improvements (M. Regis Leal, E.Gomez)
- **OE2**: Assessment of **new technologies** (C. Rossell, A, Walter, and O. Braunbeck)
- OE3: Selection of <u>potential suitable areas</u> for sugarcane production in Brazil (M. Regis Leal)
- OE4: Infra-Structure: existing and need for improvement and expansion (M. Scandiffio)
- **OE5**: Assessment of **socio-economic impacts** (J.Scaramucci, M. Cunha)
- OE6: Construction of <u>ethanol production scenarios and socio-economic</u> <u>impacts</u> (A. Furtado)
- **OE7**: Assessment of **environmental impacts** (G. Jannuzzi)
- OE8: Legislation and policies in different countries: producers and buyers (M. Sobral Jr.)
 Source: Leite et al. 2009

Energy 34(2009) 655-661

POTENTIAL FOR SUGAR CANE PRODUCTION: SOIL AND CLIMATE - WITHOUT IRRIGATION

POTENTIAL FOR SUGAR CANE PRODUCTION: SOIL AND CLIMATE – **WITH IRRIGATION**

Summary Gasoline substitution of 5% in 2025

Investments in 20 years

Agricultural + Industrial + logistics

Results Ethanol production ~ US\$ 5 billion/year

104 billion liters/year in 2025

50,000 GWh/year => 15% of 2004

Production of electricity

Production in Brazil in 2004

365,000 GWh/year

Income from Exports in 2025

US\$ 31 billion

Increase in GDP (2025) US\$ 75 billion Including direct, indirect and induced revenue (input-output matrix)

Increase Jobs

5.3 million

Average wage

50% above national average

Source: Leite et al. 2009 Energy 34(2009) 655-661

Sugarcane Zoning in Brazil

Tabela 7 - Síntese das áreas aptas para a expansão do cultivo da cana-de-açúcar no Brasil, considerando as classes de aptidão agrícola e os tipos de uso da terra predominantes em 2002.

	Classes de aptidão	Áreas aptas por tipo de uso da terra por classe de aptidão (ha)				
Brasil		Ap	Ag	Ac	Ap + Ag	Ap + Ag + Ac
	Alta (A)	11.302.342,95	600.766,55	7.360.310,26	11.903.109,50	19.263.419,76
Áreas	Média (M)	22.863.866,09	2.126.394,55	16.496.735,67	24.990.260,64	41.486.996,31
totais para	Baixa (B)	3.041.122,07	483.326,14	731.076,97	3.524.448,21	4.255.525,18
o Brasil	A+M	34.166.209,05	2.727.161,10	23.857.045,93	36.893.370,15	60.750.416,07
	A+M+B	37.207.331,12	3.210.487,24	24.588.122,90	40.417.818,36	65.005.941,25

Nota: Classes de Aptidão: A: Alta; M: Média; B: Baixa - Uso atual: Ac: Agricultura; Ag: Agropecuária; Ap: Pastagem.

Source: Ministério da Agricultura, Pecuária e Abastecimento. Zoneamento Agroecológico da Cana-de-Açúcar. 2009

Expected expansion of sugarcane production in Brazil

